BOVIDIAR (Rotavirus, Coronavirus, E. coli F5, and Cryptosporidium)

Diarrhoea is a major cause of morlity in young cattle under one month.

Bovine neonatal gastroenteritis is a multifactorial disease. It can be caused by viruses (coronavirus or rotavirus), by bacteria: (Salmonella, pathogenic strains of E. coli) or by protozoa such as Cryptosporidium.

Coronavirus and rotavirus are often associated with episodes of neonatal diarrhoea. Cryptosporidium is also frequently isolated in faeces, where it can be present in very high quantities. It can persist for a long period in the environment. F5-positive enterotoxigenic *E. coli* is frequently isolated in under-three-day-old calves, particularly in colostrum-deprived calves or in calves fed colostrum that is free of anti- *E. coli* F5 + specific antibody.

The diagnosis of the etiological agent of diarrhoea can be performed only in the laboratory because the clinical signs do not suffice to distinguish between these different microorganisms. It is possible to identify these agents by means of different techniques, including culture, staining, electron microscopy and floating techniques. However, these techniques are labour intensive, impractical and time consuming.

These classical techniques have rapidly been replaced by the ELISA technology because of its simplicity and limited laboratory equipment requirements.

The sensitivity and specificity of the ELISA technique for detecting these pathogens is at least as good as that of the more classic techniques, and the results are very similar. The ELISA technique is rapid and reliable and is particularly suited to the analysis of large numbers of samples.

Nevertheless, ELISA can be time consuming and expensive especially when small number of analysis has to be performed.

Chromatographic lateral flow immunoassay is becoming the gold standard for gastroenteritis diagnosis because of its simplicity, rapidity, sensitivity and specificity. Laboratory equipment required is limited. Results compared with classical techniques are rather similar in terms of diagnosis and strips are far easier to use.

Use of the kit

The kit is designed to detect Rotavirus, Coronavirus, E. coli F5 (K99), Cryptosporidium in calf stool

Reliable Results

The use of monoclonal antibodies as conjugates and to capture the pathogens on the strip ensures excellent specificity and very reliable results.

Ease-of-Use

Minimal hands-on-time Room temperature incubation Results available in 10 minutes

Sensitivity, specificity, VPP VPN and concordance test

For validation trials:

- Either the gold standard method when prescribed by OIE guidelines;
- Or a commonly recognized and used method when no gold standard exists.

For POC scour assays, we commonly refer to ELISA and / or rtPCR for virus / bacterial detection. For parasite, we commonly refer to egg counting.

Relative sensitivity and specificity (rSe, rSp) are indicated as well as the corresponding positive and negative predictive values (PPV and NPV) for the prevalence defined by the reference. We also indicate the Kappa coefficient which approximates the degree of concordance between the two methods.

Internal validation data are presented in the contingency tables set below.

Rota		K 348 ((ELISA)			Rota	dsRNA	electro	phoresis	PAGE
R		+	-			К		+	-	
DIA	+	93	13	106		DAI	+	48	0	48
IVO	-	11	246	257		ΙΛΟ	-	2	40	42
Ξ		104	259	363		Ā		50	40	90
					-					
	rSe		89,4 %				rSe		96,0 %	
	rSp		95,0 %				rSp		100 %	
	PPV		87,7 %				PPV		100 %	
	NPV		95,7 %				NPV		95,2%	
	Kap p a	= 0,84	Excelle	nt			Карра	=0,95	Exceller	nt

Rotavirus

Coronavirus

Corona		K 344 ((ELISA)			Corona		rtF	PCR	
R		+	-			~		+	-	
DIA	+	8	1	9		DIA	+	7	2	9
IVO	-	1	78	79		ΙΛΟ	-	4	74	78
Δ		9	79	88		Ā		11	76	87
					-					
	rSe		88,9 %				rSe		63,6 %)
	rSp		98,7 %				rSp		97,3 %	
	PPV		88,8 %	1			PPV		77,8 %)
	NPV		98,7 %	1			NPV		94,9%	
	Kap p a	= 0,87	Excelle	nt			Kappa modera	=0,38 ate	Poor to)

E.coli F5 (K99)

E.coli F5	K 348 (ELISA) + - + 12 14					E.coli F5	rtPCR			
		+	-			DIAR		+	-	
IAR	+	12	12 2 14	14			+	19	1	20
VID	-	3	346	348		IVO	-	4	62	66
BO		15	348	363		B		23	63	86

Se relative	80,00 %
Sp relative	99,4 %
VPP	85,7 %
VPN	99,1 %
Kappa = 0,82	Excellent

-	4	62	6
	23	63	8
Se rela	tive	82,6 %	
Sp rela	itive	94,4 %	
VPP		95,0 %	
VPN		93,9 %	

Kappa = 0,84 Excellent

Cryptosporidium parvum

Crypto	Eg	g count	/ Flotati	on		Crypto		K 348 (K 348 (ELISA) + - 141 17 1 0 205 2 141 222 3	
R		+	-			К		+	-	
DIA	+	32	3	35		DIA	+	141	17	158
IVO	-	2	63	65		ΙΛΟ	-	0	205	205
Ξ		34	66	100		Ä		141	222	363
	So relativo 04.4 %				_		So rola	tivo	100 %	

Se relative	94,4 %
Sp relative	95,5 %
VPP	91,4 %
VPN	96,9 %
Kappa = 0,89	Excellent

Se relative	100 %
Sp relative	92,3 %
VPP	89,2 %
VPN	100 %
Kappa = 0,90	Excellent

Cryptosporidium parvum

Crypto		rtPCR + - + 47 5 52							
OVIDIAR		+	-						
	+	47	5	52					
	-	13	70	83					
В		60	75	135					
		1		1	L		1	1	1

 Se relative
 78,3 %

 Sp relative
 93,3 %

 VPP
 90,3 %

 VPN
 84,3 %

 Kappa = 0,72
 Good

Trotz, William et al, Veterinary Parasitology, 134 (2005) 15-23